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Abstract
This study focused on the properties of data collected in large-scale assessments 
(LSA) in order to explore the relationships between sample sizes at different levels 
of clustered data and the sampling precision of the results derived from hierarchical 
linear models (HLM). A Monte Carlo simulation study was used in order to explore 
various population and sample conditions. The varied conditions were sample sizes 
of and within clusters, intraclass correlation coefficients, covariance distribution, 
use of sampling weights, and model complexity. As expected, the precision of all 
explored parameters increased as sample sizes increased. The dependency took a 
nonlinear format—a general observation that held true for all settings. The magnitude 
of the increase, and whether the effect became more pronounced as sample size 
increased on either of the hierarchical levels, could depend, however, on all explored 
sample and population conditions and could also vary across the different model 
parameters. In conclusion, the results showed that required sample sizes depend 
heavily on the parameter of interest. In particular, sampling precision differed widely 
for fixed model parameters versus variance estimates. For certain model parameters, 
the effect of how the covariance was distributed between the hierarchical levels 
appeared to be even more pronounced than the effect of varying sample sizes. The 
inclusion of sampling weights in the model decreased the sampling precision of all 
explored parameters consistently by approximately 10%. The model complexity had 
an influence on the sampling precision of all observed parameters except the residual 
variance. The influence thus varied according to the parameter of interest as well as 
the considered case of covariance distribution. 
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1.	 Introduction

Beyond controversy is the premise that education is an important factor influencing 
the development of national economies worldwide (Brown & Lauder, 1996; Decker, 
Rice, & Moore, 1997). National assessments exploring the quality and outcomes 
of education systems have consequently become popular in recent decades, while 
accretive levels of globalization have led to education increasingly being viewed 
from within a broader context (Dale, 2000; Suárez-Orozco & Qin-Hilliard, 2004). 
These developments have heightened interest in international comparative studies 
of education, many of which include large-scale assessments (LSA). The increasing 
number of educational surveys conducted by the International Association for the 
Evaluation of Educational Achievement (IEA) and the Organisation for Economic Co-
operation and Development (OECD) are evidence of this growing interest.1   

When analyzing data collected in large-scale educational surveys, researchers 
still tend to use (or to suggest the use of) simple linear regression models (Foy & 
Olson, 2009; Olson, Martin, & Mullis, 2008). While the application of these models 
is appropriate for certain types of analyses or data structures, limitations regarding 
their usefulness become apparent when the data have a nested structure, that is, 
follow specific hierarchies (Aitkin, Anderson, & Hinde, 1981; Robinson, 1950). Simple 
linear regression models do not consider the effects of multiple factors on different 
levels of the hierarchy or on their interactions. These limitations can be avoided by 
using hierarchical linear modeling (HLM) (e.g., Bryk & Raudenbush, 1992; Hox, 1995; 
Snijders & Bosker, 1999). HLM takes the multilevel structure of a comparison problem 
into account and allows predictors to be introduced at different levels, thereby 
making it possible to study the effect of the variables at the specific level in which 
they occur.

HLM is usually excellently suited for analyzing data collected in educational surveys. 
The education systems with students embedded in classes, classes embedded in 
schools, schools in districts, and districts in countries display the data structure for 
which HLM techniques were developed. In addition, general sampling strategies in 
international LSA generally imply the same hierarchical approach (see, for example, 
Martin, Mullis, & Kennedy, 2007; Olson et al., 2008). 

1	 http://www.iea.nl; http://www.oecd.org/edu
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The first stage of the approach involves, in each participating country, selecting a 
sample of schools and stratifying them according to certain organizational criteria 
(e.g., public versus private, or regions comprising different strata). The second stage 
sees classes and/or students sampled from within each participating school. The 
hierarchical data structure also opens a window into broadly defined concepts of 
student achievement in relation to some correlates of learning, such as socioeconomic 
(SES) background and school resources. 

Given these advantages, it is not surprising that more and more researchers want to 
employ HLM analysis in this field of research. However, this desire has to be taken into 
account when developing the general study design of an educational assessment. 
Researchers need to be aware at this time of an important problem associated with 
designing studies suitable for multilevel modeling, namely the required sample sizes at 
the different levels of the hierarchy (see, for example, Maas & Hox, 2005; Scherbaum 
& Ferreter, 2009; Snijders & Bosker, 1999). 

In recent years, a number of researchers have tried to address the problem by 
conducting (mostly) simulation studies with certain conditions in order to produce 
rules of thumb or even software that enable users to determine the optimal survey 
design. However, the literature available on the subject tends to be highly technical, 
hard to apply, and not easily procured. Most importantly, existing simulation studies 
are based on assumptions that do not fully apply to data collected in educational 
LSA, either because they fail to or only partially address the features typical of these 
datasets. 

But what are the characteristics of typical LSA survey designs? In general, minimum 
sample sizes in LSA are predetermined by multiple factors, such as the requested 
precision of population estimates, the number of items and the item rotation design 
(connected to the need to have minimum response numbers per item), minimum 
cell assignments in cross tables, and so on. For example, most IEA surveys specify a 
minimum sample size of 150 schools to ensure that certain precision requirements 
are met. To give another example, the item rotation design applied in studies such as 
TIMSS2 calls for a sample size of at least 4,000 tested students per education system 
because each tested student takes only one-seventh of the whole assessment (Olson 
et al., 2008). In this second case, the total student sample size is dictated by the item 
rotation design while the total cluster (school) sample size is dictated by the precision 
requirements and the design effect. Furthermore, cluster sampling of classes often 
dictates within-cluster sample sizes of about 20 to 30 individuals per cluster.

In addition, data originating from complex surveys carry weights that reflect the 
multiple selection probabilities of each unit, adjusted for non-response. Although 
general sampling designs usually aim for self-weighted samples (e.g., Joncas, 2008),3  

estimation weights always vary due to stratification, practical constraints associated 
with implementation of the ideal sampling design, and non-response adjustments, 

2	 Trends in International Mathematics and Science Study, conducted by IEA: http://timss.bc.edu/

3	 Samples that lead to equal selection probabilities of the units of interest are called self-weighted samples. 
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a situation that can lead to increased sampling variance. Since the development of 
multilevel analysis techniques, the need to consider sampling weights when engaged 
in multilevel modeling, as well as the influence of that modeling on estimates, has 
attracted attention (albeit limited) in the literature (see, for example, Asparouhov, 
Muthén, & Muthén, 2006; Chantala, Blanchette, & Suchindran, 2006; Korn & 
Graubard, 1995; Pfeffermann, Skinner, Holmes, Goldstein, & Rabash, 1998; Rabe-
Hesketh & Skrondal, 2006; Stapleton, 2002; Zaccarin & Donati, 2008). However, no 
mention seems to have been made in this body of work of relationships between 
sampling weights, the statistical precision of the models, and required sample sizes.

All these constraints suggest the desirability of an evaluation of the sample sizes 
required to achieve a predetermined level of precision when applying multilevel 
modeling oriented toward the specific structure of data collected from educational 
large-scale assessments. Our aim, therefore, in this paper is to extend knowledge 
about the association between sample sizes and precision of the estimates under 
varying population and sample conditions and relative to model complexity. 
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